Name: __________________________

Java OOP

Accessors & Mutators Lab 3

In the last lab we added two new constructors to the Square class. Constructors are only called once, when we first instantiate an object. Wouldn’t it be nice to be able to reposition our Square without calling the moveHorizontal() or moveVertical() methods. Let’s write a reposition() method.

1.
Open the Shapes project. Right click on the Square diagram and select Open Editor.

2.
How many parameters will our new reposition() method need? _____

· Use this code to start off your new method and then fill in the missing code:

 /**

 * Reposition the Square to (newX, newY)

 */

 public void reposition()

 {

 }

· Compile your new code.

· Instantiate a new square object. Invoke its Object Inspector and then invoke your new reposition() method.

· Did the xPosition and yPosition change?

· Did the object move? If it did not, you forgot to call the draw() method after you changed the object’s position. Look at the source code for moveHorizontal() for an example.

· Why did you not have to include the erase() method?

Methods that are not constructors are either mutators (or modifiers) or accessors. The reposition() method is a mutator, since it changes, or mutates, one or more of the classes attributes. After reposition has been invoked, the xPosition and/or yPosition attributes have been changed.

Since BlueJ has an Object Inspector, it is easy to inspect an object’s attributes. Other IDE’s (Integrated Developer’s Environment) don’t have this function. It is then often useful to supply each class with accessors that return the value of each attribute. An accessor will always have a return type other than void.

3.
Paste the following code below the constructors in the Square class.

 /**

 * Returns the current value of the size attribute

 */

 public int getSize()

 {

 return size;

 }

· Instantiate a new square object and invoke your new getSize() accessor.

· There is no way to change an object’s size yet. Write a new mutator with the below signature:

 /**

 * Changes the squares size attribute to newSize

 */

 public void setSize(int newSize)

 {

 }

· Test your new mutator.

· Use the getSize() accessor to confirm that the object’s size attribute was modified.

Concatenation

Concatenation allows us to “add” two strings together. What do you think the output of the below code would be?

String prefix = “Smith”;

String suffix = “town”;

String city = prefix + suffix; // Equivalent to: city = “Smith” + “town”:

System.out.println(city);

4.
Complete the code below so that the returned string would appear something like (20,50).

 /**

 * Returns the square’s current position.

 */

 public String getPosition()

 {

 String coords = “(“ + xPosition + ", " ______________________

 return coords;

 }
· Instantiate a new Square object and verify that it works.

5.
Add an accessor and a mutator for the color attribute.

· Instantiate a new Square object and verify that it works.

