Name: __________________________

Java OOP

Constructors Lab 2

Constructors

1.
Open the Shapes project. Right click on the Square diagram and select Open Editor

· This is the source code for the Square object. You will notice that all the attributes listed in the Object Inspector are there.

[image: image1.jpg]

· Scroll down slightly – Under the attributes is the constructor for the Square object. Its signature is: public Square().

public Square()
{
size = 30;
xPosition = 60;
yPosition = 50;
color = "red";
isVisible = false;
}

The constructor always has the same name as the class. Its job is to set the initial state of the object. In other words, when a Square object is created it will have a size of 30, an xPosition of 50, a yPosition of 60, the color will be red and it will not be visible in the window.

· Scroll down until you see public void moveRight()

· What method does moveRight() invoke? _____________

· How many pixels does the object move? _____

· Change the code so that object moves twice that amount.

· Click on the Compile button on the top. Since you have changed the code you have to have the computer “translate” (compile) the new code.

· Test your new code by creating a new Square object. Invoke its Object Inspector. Check the xPosition attribute before and after invoking its moveRight() method.

2.
Let’s automate step 6 from Lab 1. Open the Square class editor by double-clicking the Square icon. You are about to write your own method for the Square class. The new code will need to appear below the constructor for the Square class.

· The code below shows how your new method should look. You will need to replace the question marks with the values your recorded in step 6 of Shapes Lab.

 public void exercise6()

 {

 erase();

 changeSize(?);
 moveVertical(?);

 moveHorizontal(?);

 draw();

 slowMoveHorizontal(?);

 slowMoveVertical(?);

 }

· After you type this you must compile (1st button on the top) your new code. If there are any mistakes there will be an error message at the bottom. The error made most often is to forget to place a semi-colon (;) at then end of each line.

· Instantiate a new square object and invoke your new exercise6() method. If the square diagram is cross hatched and does not list new Square(), you must choose the compile option.

3.
Modify the exercise6() method so that the square makes a complete lap of the canvas.

Overloaded Constructors

Right now the Square class has a default constructor (the only constructor in other words) whose signature is public class Square(). Wouldn’t it be nice to have the ability to place our square where we would like it to start? We can do this by supplying another constructor. Our only constraint is the number of parameters (values that are passed into the constructor before it can work) for each constructor we write must be different. i.e. each constructor’s signature must be different. That way the compiler can tell which one we wish to use.

· Enter the below code below the default constructor.

 public Square(int xStart, int yStart)

 {

 size = 30;

 xPosition = xStart;

 yPosition = yStart;

 color = "red";

 isVisible = true;

 draw();

 }

· Instantiate a new Square object using our overloaded constructor (meaning it is not just the default constructor) and verify that it works.

4.

Write a new constructor that allows you to enter the starting position, the color, and the size.

· Use the signature below:

 public Square(int xStart, int yStart, String startColor, int startSize)

· Verify that your constructor works by instantiating 4 new Square objects at each corner of the canvas. These objects should all be different colors and different sizes.

5.
After we instantiate any object, we always have to make it visible. What a pain! Take a look at the source code for the method makeVisible(). Modify each of your constructors so that they will be visible to start.

Objects Creating other Objects

6.
Press the New Class… button. Name the new class MyCircles. Open the Editor. Replace the code with the following:

public class MyCircles

{

private Circle firstCircle;

private Circle secondCircle;

public MyCircles()

{

// not needed for this exercise

}

public void drawCircles()

{

 firstCircle = new Circle();

 firstCircle.changeColor("green");

 firstCircle.moveHorizontal(50);

 firstCircle.moveVertical(-20);

 firstCircle.changeSize(60);

 firstCircle.makeVisible();

 secondCircle = new Circle();

 secondCircle.changeColor("blue");

 secondCircle.moveHorizontal(125);

 secondCircle.moveVertical(60);

 secondCircle.changeSize(25);

 secondCircle.makeVisible();

}

}

Compile the new code. Instantiate a MyCircles object. Invoke the drawCircles() method.

Let’s look at the code.

private Circle firstCircle;

This line of code creates a space, named firstCircle, in the computer’s memory where it will hold an object of type Circle. Don’t worry about the term private for now. In fact, you could remove it and the program would run just fine.

firstCircle = new Circle();

This line of code creates the Circle object named firstCircle and places it in the computer’s memory.

Once an object has been created, the object can be manipulated by invoking (calling) its methods as defined in its class definition. The period, or ‘dot syntax’ as it is called, is used to make the method call. Remember, to make a method call in the past, you would right-click an object on the object bench and manually select a method. This of course would never work in a real world application.

So,

firstCircle.changeColor("green");

tells the computer to invoke the changeColor() method:

public void changeColor(String newColor)

{

 color = newColor;

 draw();

 }

of the firstCircle object. Notice that the String “green” was needed because the changeColor() method has a String newColor parameter that must exist in order for the method to work correctly.

7.
Create a new class, named Picture, that draws a house and sun as shown below.
[image: image2.png]
Passing Objects as Parameters

To this point you have been passing values (parameters) into constructors and methods to change things like the position or size of an object. In this exercise you will be passing complete objects as parameters.

1. Create a new class named Runners().

2. In Runners() declare four Square() objects. Name them upperLeft, upperRight, lowerRight and lowerLeft.

3. In the Runners() class create a method named makeFourRunners(). The method will instantiate the four Square() objects declared previously using the constructor from step 4 above, all size 10, each a different color, and positioned at the four corners of the canvas.
For example: upperLeft = new Square(0,0,"yellow",10);

4. Create a new class named Race().

5. In the Race() class create a method named relay(). It will use the following signature:

 public void relay(Square nw, Square ne, Square se, Square sw)

Notice in the signature above that the parameters are not int or String but Square. The actual Square objects are being passed as parameters. The method will take the four Squares passed from the Runners() object and make them move to simulate a relay race around the edges of the canvas. The square in the upper left corner will move across the top of the canvass until it reaches the right side. Then, the original square in the upper right corner will move to the bottom right corner. Continue this pattern for the remaining two squares.

6. Back in the Runners() class, declare a Race() object named theRace.

7. In the makeFourRunners() method of Runners() add code to instantiate the Race() object named theRace. Then write the code so that theRace invokes its relay method.

8. To test to see if everything is working right click on the Runners class and create an instance. Right click on the instance and choose the makeFourRunners() method. You should see four squares moving one at a time along an edge of the canvas.
