T2O: Object Oriented Methods

OO Java - Student

This exercise implements the two classes shown in the following class diagram:-

The relationship between the classes is that of aggregation - a Student is part-of a Module. Also note the degree of the relationship – a module may be taken by many students (as shown by the *), but a student may only take 1 module (indicated by the ‘1’ at the module end of the relationship).

To store the multiple occurrences we need a data structure to hold many object IDs. We could use an array of objects of class Student, but in this case we will use a Vector - one of the built in classes provided by Java.

Below is the code used to implement these classes:-

1 import java.util.*;

2 public class Module

3 {

4
String name;

5
Vector listOfStudents;

6
public Module(String in_name)

7
{

8
name = in_name;

9
listOfStudents = new Vector(20);

10
}// end constructor Module(name)

11
protected void addStudent(Student aStudent)

12
{

13
listOfStudents.add(aStudent);

14
}// end method addStudent

15
public void print()

16
{

17
Student aStudent;

18
System.out.println("Class List for module: "+name);

Code for the method print() continues at the top of the next column

19
for (int i = 0; i<= listOfStudents.size()-1;i++){

20

aStudent = (Student)listOfStudents.elementAt(i);

21

System.out.println(i+" "+aStudent.forename+" "+aStudent.surname);

22
}// next i

23
}// end method print()

24 }// end class Module

25 public class Student

26 {

27
int refNo;

28
String forename;

29
String surname;

30
Module moduleTaken;

31
public Student(int in_refNo, String in_forename, String in_surname)

32
{

33
refNo= in_refNo;

34
forename = in_forename;

35
surname = in_surname;

36
} // end constructor Student(refNo, forename, surname)

37
public void setModuleTaken(Module aModule)

38
{

39
moduleTaken=aModule;

40
aModule.addStudent(this);

41
}// end method setModuleTaken()

42
public String getModuleName()

43
{

44
String moduleName;

45
if (moduleTaken == null)

46

moduleName = "*Unknown";

47
else

48

moduleName = moduleTaken.name;

49
return moduleName;

50
}// end method getModuleName()

51
public void print()

52
{

53
System.out.println("RefNo: "+refNo);

54
System.out.println("Name: "+forename+" "+surname);

55
System.out.println("Module: "+getModuleName());

56
} // end method print()

57 }// end class Student

Notes:

class Module
Lines 5,6: Define the attributes for this class. A Vector is to used to hold the list of Student objects.

Line 8: This constructor also initialises the name of the module through its parameter list.

Line 11: Since listOfStudents is an object of class Vector it must be instantiated by using the new statement. This runs the constructor Vector() which creates room for 20 objects initially. It is a feature of a Vector object that it is automatically extended when more room is needed. This does not apply to an array, which must have a fixed maximum size.

Line 16: This invokes the add() method of a Vector object to add the Student object ID passed to it as parameter to the listOfStudents.

Line 19: Starts the definition of a print() method that displays the status of the module (its name and list of students) on the terminal window.

Line 23: This part of the print() method starts a loop that will iterate through all of the elements in the listOfStudents. The size() method of Vector tells you the number of elements in that Vector object. The elements start at 0, so it is necessary to subtract 1 from the value returned by size().

Line 24: This uses the elementAt() method of a Vector object to obtain the aStudent from the list. Since the Vector could store any type of object we must explicitly cast the object obtained as class Student by putting (Student) at the start of the expression.

class Student
Lines 3-6: Define the attributes of this class. Note that moduleTaken forms the association with an object of Module.

Line 8: This is a constructor for this class. It initialises some of the attributes through values passed in its parameter list.

Line 15: This method sets the value of the module taken by the student (line 17). It also sends the message addStudent() to the Module (line 18) which adds this student to the listOfStudents attribute of the Module. The keyword this refers to the object ID that sent the message (ie the Student). This approach ensures that both ends of the association are set up at the same time.

Line 27: Shows how at access the name attribute of the Module object

A.
Create classes

1.
Start a new project in BlueJ called T2O_student
2.
Create classes Student and Module. Type in, and compile, the definitions for these modules. Check for syntax errors.

B.
Instantiate objects

1.
Using the appropriate constructors, create the following instances:-

	Module m1 “Maths”
	Module m2 “English”

	Student s1 101 “Jane” “Smith”
	Student s2 222 “Eric” “Pode”

	Student s3 777 “Henry” “Crun”
	Student s4 654 “John” “Jones”

2.
Use the print() method of objects m1 and s1
3.
Use the setModuleTaken() method of s1 to enrol her on module m1
4.
Use the print() method of objects m1 and s1 again

5.
Enrol students s2 and s3 on to module m1. Add student s4 to the module list for m2.

6.
Use the object inspector on s2 to follow the moduleTaken attribute to the associated Module
7.
Change student s4 from module m2 to module m1. Check if this works successfully. What needs to be done to improve this?

9.
Remove student s3 altogether – Right Click and choose Remove. Now use the print() method for object m1. What has gone wrong; how would you correct this?

Student

refNo

forename

surname

moduleTaken

Student(ref,sn,fn)

setModuleTaken()

getModuleName()

print()

Module(n)

addStudent (s)

print()

name

listOfStudents

Module

 moduleTaken 

1

add() is a method of

class Vector

listOfStudents is instantiated when Module constructor is run

class Vector is imported

from java.util library

listOfStudents is of class Vector

*

elementAt() is an

accessor method

of class Vector

attributes of Student include moduleTaken which is

of class Module

accessor method

of class Vector

constructor method also

 initialises the Student object which it instantiates

this method sets the moduleTaken attribute and

adds this student to the listOfStudents for the module

test for a null pointer

which could occur if the student doesn’t have a module assigned yet

© Faculty of Computing, Information and English

Page 1 of 2

Version 1.1, July 2001 T2O_Bluej5

